您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 电气工程 > 发电/电力网/电力系统 > 摘要

采用混合语言信息群决策的电力负荷密度预测法

《电力系统保护与控制》2014年 第7期 | 周胜瑜 周任军 李红英 康信文   智能电网运行与控制湖南省重点实验室(长沙理工大学) 湖南长沙410004
★ 收藏 | 分享
  • 第1页
  • 第2页
  • 第3页
  • 第4页
论文服务:
摘 要:传统城市空间负荷密度预测法在实际预测过程中其结果的可信度依赖于大量有效的样本数据,而在实际中收集到较齐全的可行样本数据存在很大的难度。为此提出了一种将混合语言信息群决策方法和BP神经网络相结合的城市电力负荷密度预测法。该方法采用基于混合语言信息的群决策方法,通过各决策者的评价,计算城市各小区相应的经济、人口、地理环境的综合评分值,并利用BP神经网络,训练各指标综合评分值与相应的小区负荷密度,利用训练后的网络结构和待定小区的各指标综合评分结果,预测城市该小区的负荷密度。通过对城市若干小区的负荷密度及各指标综合评分值做比较分析,预测了部分小区的负荷密度值。结果表明预测计算过程摆脱了需要大量收集特定指标定量数据的问题,并且预测结果具有较高的可信度。
【分 类】【工业技术】 > 电工技术 > 输配电工程、电力网及电力系统 > 理论与分析 > 电力系统规划
【关键词】 混合语言信息群决策方法 城市电力负荷密度预测 BP神经网络 三大类指标 指标综合评分值
【出 处】 《电力系统保护与控制》2014年 第7期 15-22页 共8页
【收 录】 中文科技期刊数据库