您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 自动化计算机 > 计算机应用 > 摘要

基于VGG16 模型的快速闭环检测算法

《光学仪器》2019年 第3期 | 张学典 顾璋琦 秦晓飞   上海理工大学光电信息与计算机工程学院 上海200093
★ 收藏 | 分享
  • 第1页
  • 第2页
  • 第3页
  • 第4页
论文服务:
摘 要:深度卷积神经网络在图像特征表示方面优于传统手工特征,将其用于闭环检测时还存在计算时间随着数据增长不断增加的问题。为了解决这一问题,提出了一种基于VGG16模型的快速闭环检测算法。该算法使用在ImageNet上预训练的VGG16网络模型提取图像卷积特征,并通过一种自适应粒子滤波方法得到闭环候选帧,以固定运算时间。在主流的闭环检测数据集CityCentre和NewCollege上对此算法进行测试,实验结果显示,该算法在两个数据集上可以分别达到92%准确率下70%召回率和96%准确率下61%召回率,超过了同类算法,并有效解决了计算时间增长的问题。
【分 类】【工业技术】 > 自动化技术、计算机技术 > 计算技术、计算机技术 > 计算机的应用 > 信息处理(信息加工) > 模式识别与装置
【关键词】 机器视觉 卷积神经网络 闭环检测 粒子滤波
【出 处】 《光学仪器》2019年 第3期 20-26页 共7页
【收 录】 中文科技期刊数据库