您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 自动化计算机 > 计算机应用 > 摘要

基于多示例学习的超市农产品图像识别

《计算机应用》2012年 第6期 | 罗承成 李书琴 唐晶磊   西北农林科技大学信息工程学院 陕西杨凌712100
★ 收藏 | 分享
  • 第1页
  • 第2页
  • 第3页
  • 第4页
论文服务:
摘 要:为解决超市农产品价格需依靠人工记忆的问题,实现农产品的智能识别,提出了基于多示例学习的农产品图像识别方法。采用改进的单色块及其邻域算法(SBN)特征提取算法将训练样本组织成多示例包,利用多样性密度算法对正包和反包进行多示例学习,根据多样性密度最大化模型对测试样本进行识别。分别在自采集的多类别果蔬图像集以及Amsterdam图像库中的单类别果蔬图像上进行测试。结果表明该方法能够识别不同光照、存在干扰物的环境背景下,以任意方式摆放的多类别混合果蔬图像,识别率最高达到94.21%,且对于单类别果蔬图像的识别优于全局方法。因此利用基于多示例学习的图像识别方法对超市农产品的自动售卖提供辅助具有可行性。
【分 类】【工业技术】 > 自动化技术、计算机技术 > 计算技术、计算机技术 > 计算机的应用 > 信息处理(信息加工) > 模式识别与装置 > 图像识别及其装置
【关键词】 超市农产品 图像处理 模式识别 多示例学习 特征提取
【出 处】 《计算机应用》2012年 第6期 1560-1562页 共4页
【收 录】 中文科技期刊数据库