您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 自动化计算机 > 计算机应用 > 摘要

基于PU与生成对抗网络的POI定位算法

《计算机研究与发展》2019年 第9期 | 田继伟 王劲松 石凯   天津理工大学计算机科学与工程学院 天津300384 天津市智能计算及软件新技术重点实验室(天津理工大学) 天津300384 计算机病毒防治技术国家工程实验室(天津理工大学) 天津300457
★ 收藏 | 分享
  • 第1页
  • 第2页
  • 第3页
  • 第4页
论文服务:
摘 要:随着智能移动设备的快速普及,人们对基于位置的社交网络服务的依赖性越来越高.但是,由于数据采集成本昂贵以及现有数据采集技术的缺陷,基于小样本数据挖掘的兴趣点(point of interest, POI)定位已经成为了一种挑战.尽管已经有一些POI定位方面的研究,但是现有的方法不能解决正样本数据不足的问题.提出一种基于PU与生成对抗网络(positive and unlabeled generative adversarial network, puGAN)的模型,采用PU学习和生成对抗网络相结合的方式挖掘数据的隐藏特征,生成伪正样本弥补数据不足的问题,并校正无标签样本数据的分布,从而训练出有效的POI判别模型.通过分析ROC曲线以及训练误差和测试误差在迭代过程中的变化和关系来比较不同模型在实验场景下的效果.结果表明,puGAN模型可以有效解决数据样本不足的问题,进而提高POI定位的准确性.
【分 类】【工业技术】 > 自动化技术、计算机技术 > 计算技术、计算机技术 > 计算机的应用 > 信息处理(信息加工)
【关键词】 数据挖掘 兴趣点 定位 PU 生成对抗网络
【出 处】 《计算机研究与发展》2019年 第9期 1843-1850页 共8页
【收 录】 中文科技期刊数据库