您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 自动化计算机 > 计算机应用 > 摘要

基于HeteSim的疾病关联长非编码RNA预测

《计算机研究与发展》2019年 第9期 | 马毅 郭杏莉 孙宇彤 苑倩倩 任阳 段然 高琳   西安电子科技大学计算机科学与技术学院 西安710071
★ 收藏 | 分享
  • 第1页
  • 第2页
  • 第3页
  • 第4页
论文服务:
摘 要:越来越多的研究表明,长非编码 RNA(long non-coding RNA, lncRNA)在许多生物过程中具有重要的功能,而这些长非编码 RNA 的变异或功能失调会导致一些复杂疾病的发生.通过生物信息学方法预测潜在的长非编码 RNA-疾病关联关系,对于致病机理的探索以及疾病诊断、治疗、预后和预防都具有重要的意义.基于疾病基因关联关系的异质信息网络,研究者使用了一种相关性计算法方法——HeteSim来计算疾病基因之间的相关性,进而预测致病基因.使用的方法基于路径约束,具有可扩展性,算法效率高,留一交叉验证实验表明该方法的预测结果优于其他方法.将其应用在卵巢癌和胃癌的预测分析中,相关文献表明,所提方法的预测结果已被生物实验等验证,再次表明该方法的有效性.
【分 类】【工业技术】 > 自动化技术、计算机技术 > 计算技术、计算机技术 > 计算机的应用 > 在其他方面的应用
【关键词】 致病基因预测 相关性计算 异质信息网络 HeteSim方法 元路径
【出 处】 《计算机研究与发展》2019年 第9期 1889-1896页 共8页
【收 录】 中文科技期刊数据库