您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 自动化计算机 > 自动化理论 > 摘要

基于选择性模式的贝叶斯分类算法

《计算机研究与发展》2020年 第8期 | 鞠卓亚 王志海   北京交通大学计算机与信息技术学院 北京100044 32178部队 北京100012
导出参考文献 ★ 收藏 | 分享
  • 第1页
  • 第2页
  • 第3页
  • 第4页
论文服务:
摘 要:分类问题是数据挖掘的一个重要研究课题.朴素贝叶斯分类器是分类问题中一种简单高效的分类学习技术.该分类器假定给定类标时属性之间相互条件独立,然而现实中属性之间往往具有一定的依赖关系."属性-值"序偶构成的模式在分类问题中具有关键作用,许多研究者利用这种特定模式构造分类器,而特定模式所包含的属性与其他属性之间的依赖关系,将对分类结果产生重要影响.通过对属性间的依赖关系进行深入研究,提出基于选择性模式的贝叶斯分类算法,既利用了基于贝叶斯网络分类器的优秀分类能力,又通过进一步分析模式中属性之间的依赖关系,削弱了属性条件独立假设的限制.实验证明:根据数据集特点,深入挖掘高区分能力的模式,合理构建属性之间的依赖关系,有助于提升分类精度.实验分析表明:与基准算法NB,AODE相比,提出的分类算法在10个数据集上的平均精度分别提升了1.65%和4.29%.
【分 类】【工业技术】 > 自动化技术、计算机技术 > 自动化基础理论 > 人工智能理论 > 自动推理、机器学习
【关键词】 分类 模式发现 选择性模式 依赖关系 贝叶斯分类器
【出 处】 《计算机研究与发展》2020年 第8期 1605-1616页 共12页
【收 录】 中文科技期刊数据库