您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 自动化计算机 > 计算机应用 > 摘要

基于社交媒体的事件脉络挖掘研究进展

《中文信息学报》2019年 第11期 | 张晨昕 饶元 樊笑冰 王硕   西安交通大学深圳研究院 广东深圳518057 西安交通大学软件学院社会智能与复杂数据处理实验室 陕西西安710049
★ 收藏 | 分享
  • 第1页
  • 第2页
  • 第3页
  • 第4页
论文服务:
摘 要:随着Web 2.0的兴起以及移动互联网与智能终端的蓬勃发展,以微博为代表的社交媒体迅速发展壮大。基于社交媒体的事件脉络挖掘技术在突发事件检测、事件走势分析、舆情预测等诸多方面发挥着重要作用,受到学术界的广泛关注。该文在最新研究成果与文献的基础上,以事件脉络挖掘的实现为出发点,概括总结了核心步骤中存在的关键技术,并归纳提出了目前事件脉络挖掘与分析过程中存在的4个关键性的技术问题与挑战,分别如下:多模态信息融合条件下的事件脉络生成、跨媒介异构数据协同下的事件挖掘与事件脉络生成、层次化多粒度复杂事件的关系映射和实时数据条件下动态事件的快速识别与脉络生成。同时,针对上述关键问题与技术挑战进行了理论探讨、工作进展与趋势分析以及实际应用介绍,从而为深入研究和解决基于社交媒体的事件脉络挖掘技术提供了新的研究线索与方向。
【分 类】【工业技术】 > 自动化技术、计算机技术 > 计算技术、计算机技术 > 计算机的应用 > 信息处理(信息加工)
【关键词】 社交媒体 多模态信息 跨媒介 事件脉络挖掘
【出 处】 《中文信息学报》2019年 第11期 15-30页 共16页
【收 录】 中文科技期刊数据库

尊敬的读者:

在全国人民勠力同心抗击新型冠状病毒感染的肺炎疫情之际,为了给广大人民群众的教育、工作和生活提供便利,维普网(www.cqvip.com)在疫情防控期间免费向读者开放学术论文的下载权限。