您的位置:网站首页 > 《中文科技期刊数据库》 > 工程技术 > 自动化计算机 > 自动化系统 > 摘要

基于PSO算法的多变量PID型神经元网络在球磨机控制上应用

《电力自动化设备》2008年 第1期 | 程启明 郑勇   上海电力学院电力与自动化学院 上海200090 上海大学自动化学院 上海200072
购物车 | ★ 收藏 | 分享
论文服务:
摘 要:为提高多变量、非线性和强耦合系统的动态特性和解耦能力,基于PID控制的简单结构和良好性能优势以及神经元网络的自调节和自适应的特长.设计了具有PID结构的多变量自适应的PID型神经元网络控制器。给出了这种控制系统的结构和算式.其为一种3层前向神经网络,其隐层单元分别为比例(P)、积分(I)和微分单元(D),各层神经元个数、连接方式、连接权值的初值是按PID控制规律确定的。神经元网络参数采用了粒子群优化(PSO)学习算法,并给出了相关算式。分析了球磨机制粉控制系统的特点.并应用提出的控制方法对其进行了仿真研究,比较了文中控制方法与传统的PID控制方法的控制效果。仿真结果表明了所提方法具有较好的控制品质、良好的自适应解耦能力和自学习功能。
【分 类】【工业技术】 > 自动化技术、计算机技术 > 自动化技术及设备 > 自动化系统 > 自动控制、自动控制系统 > 计算机控制、计算机控制系统
【关键词】 多变量系统 神经元网络 解耦控制 粒子群优化算法 球磨机
【出 处】 《电力自动化设备》2008年 第1期 81-85页 共5页
【收 录】 中文科技期刊数据库

尊敬的读者:

在全国人民勠力同心抗击新型冠状病毒感染的肺炎疫情之际,为了给广大人民群众的教育、工作和生活提供便利,维普网(www.cqvip.com)在疫情防控期间免费向读者开放学术论文的下载权限。